Ulam Sequences and Ulam Sets

نویسندگان

  • Noah Kravitz
  • Stefan Steinerberger
چکیده

The Ulam sequence is given by a1 = 1, a2 = 2, and then, for n ≥ 3, the element an is defined as the smallest integer that can be written as the sum of two distinct earlier elements in a unique way. This gives the sequence 1, 2, 3, 4, 6, 8, 11, 13, 16, . . . , which has a mysterious quasi-periodic behavior that is not understood. Ulam’s definition naturally extends to higher dimensions: for a set of initial vectors {v1, . . . , vk} ⊂ Rn, we define a sequence by repeatedly adding the smallest elements that can be uniquely written as the sum of two distinct vectors already in the set. The resulting sets have very rich structure that turns out to be universal for many commuting binary operations. We give examples of different types of behavior, prove several universality results, and describe new unexplained phenomena.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Theorems of Borsuk-ulam Type for Flats and Common Transversals

In this paper some results on the topology of the space of k-flats in Rn are proved, similar to the Borsuk-Ulam theorem on coverings of sphere. Some corollaries on common transversals for families of compact sets in Rn, and on measure partitions by hyperplanes, are deduced.

متن کامل

Hyers-Ulam and Hyers-Ulam-Rassias stability of nonlinear integral equations with delay

In this paper we are going to study the Hyers{Ulam{Rassias typesof stability for nonlinear, nonhomogeneous Volterra integral equations with delayon nite intervals.

متن کامل

Ulam Stability of Ordinary Differential Equations

In this paper we present four types of Ulam stability for ordinary differential equations: Ulam-Hyers stability, generalized UlamHyers stability, Ulam-Hyers-Rassias stability and generalized Ulam-HyersRassias stability. Some examples and counterexamples are given.

متن کامل

Hyers-Ulam Stability of Non-Linear Volterra Integro-Delay Dynamic System with Fractional Integrable Impulses on Time Scales

This manuscript presents Hyers-Ulam stability and Hyers--Ulam--Rassias stability results of non-linear Volterra integro--delay dynamic system on time scales with fractional integrable impulses. Picard fixed point theorem  is used for obtaining  existence and uniqueness of solutions. By means of   abstract Gr"{o}nwall lemma, Gr"{o}nwall's inequality on time scales, we establish  Hyers-Ulam stabi...

متن کامل

Ham Sandwich is Equivalent to Borsuk-Ulam

The Borsuk-Ulam theorem is a fundamental result in algebraic topology, with applications to various areas of Mathematics. A classical application of the Borsuk-Ulam theorem is the Ham Sandwich theorem: The volumes of any n compact sets in R can always be simultaneously bisected by an (n− 1)-dimensional hyperplane. In this paper, we demonstrate the equivalence between the Borsuk-Ulam theorem and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1705.01883  شماره 

صفحات  -

تاریخ انتشار 2017